Energetic Materials Modeling for Rocket Propulsion

Computational Chemistry and

Materials Science in the DoD

19-20 September 2005

Jerry Boatz

Propellants Development Branch

Propulsion Directorate

Air Force Research Laboratory

This briefing contains information up to:

RCE RESEARCH LABOR

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE AUG 2005		3. DATES COVERED					
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
Energetic Materials Modeling for Rocket Propulsion (Briefing Charts) Computational Chemistry and Materials Science in the DoD 6. AUTHOR(S) Jerry Boatz; Jeffrey Mills					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
					5d. PROJECT NUMBER 2303		
				5e. TASK NUMBER 0423			
					5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE 1 Laboratory (AFM B,CA,93524-7680	` '	E. Saturn	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S)					
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
13. SUPPLEMENTARY NO	OTES						
14. ABSTRACT N/A							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LI				18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT	OF PAGES 26	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

1. Introduction

2. Technical challenges in propellant design

3. Modeling and Simulation (M&S) techniques & tools

- a) Quantum chemistry
- b) High Performance Computing (HPC)

4. Examples

- a) Identification of suitable target compounds
- b) Determination of viable intermediates
- c) Confirmation of successful synthesis

5. Challenges and Bottlenecks

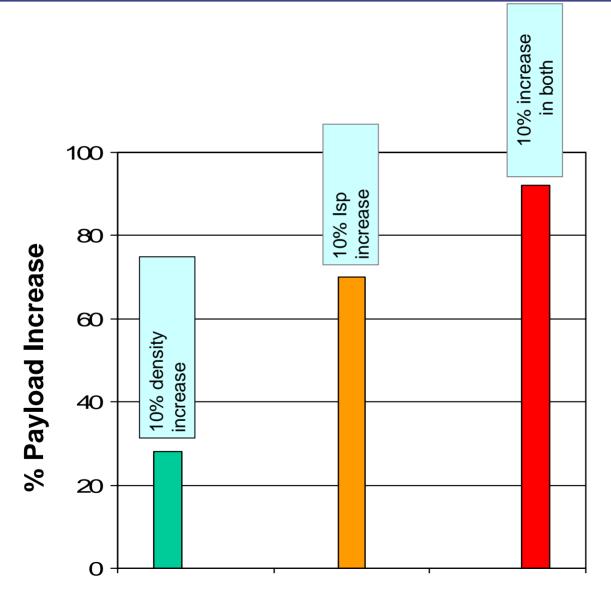
6. Summary and Conclusions

1. What We Are Doing

Identifying and developing advanced chemical propellants for rocket propulsion applications

- •lsp is the major metric of a propellant's performance
- Density can also be a significant contributor

Breaking the performance barrier



This page is: DISTRIBUTION A. Approved for public release; distribution unlimited.

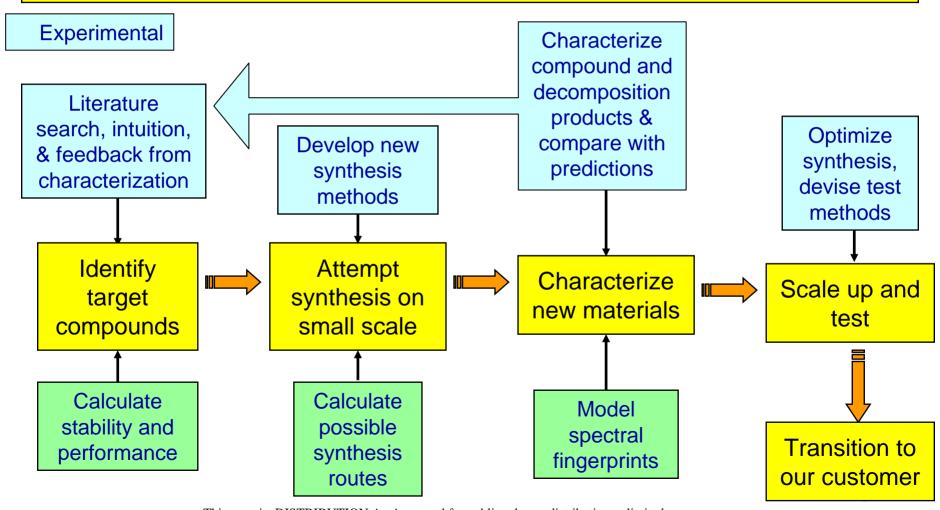
1. Why We Are Doing It

1. How We Do it

High Energy Density Matter

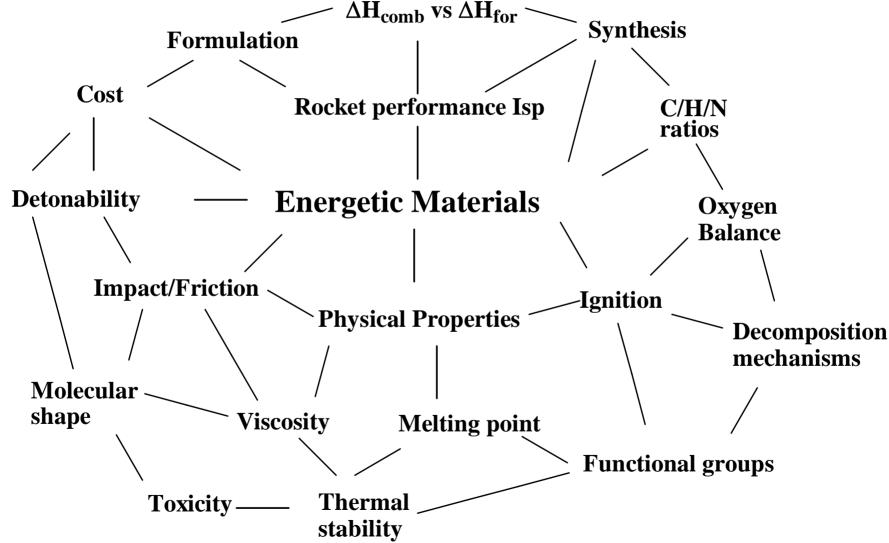
- Advanced solid ingredients
- Computational Chemistry
- Polynitrogen chemistry
- Ionic liquids
- Advanced hydrocarbon fuels
- Ignition studies

Propellant Development


- Ingredient characterization
- Propellant characterization
- Ingredient scale up
- Propellant scale up
- Small scale hot fire propellant testing

1. Propellants Program General Approach

Employ a synergic blend of experimental (synthesis and physical) and computational techniques derived from the disciplines of chemistry and physics



This page is: DISTRIBUTION A. Approved for public release; distribution unlimited.

2. Challenges in Propellant Design

2. Challenges Addressed by M&S

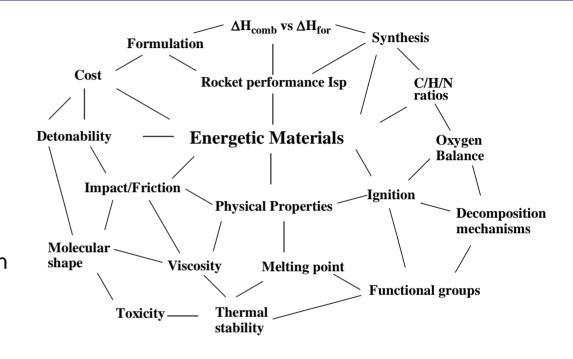
Stability

Energy Content

Reactivity

Synthesis
Ignition
Combustion
Decomposition

Bulk properties


Melting points

Densities

Transport properties (e.g., thermal conductivity)

Sensitivity (impact/friction/shock)

Toxicity

3. M&S of New Chemical Propellants: Quantum Chemistry

Various computational techniques are employed to solve the molecular electronic Schrödinger equation (SE) from quantum mechanics:

$$\left[-\frac{1}{2} \sum_{i} \nabla_{i}^{2} - \sum_{i} \sum_{\alpha} \frac{Z_{\alpha}}{r_{i\alpha}} + \sum_{i} \sum_{j > i} \frac{1}{r_{ij}} \right] \Psi_{el} = E_{el} \Psi_{el}$$

Is a proposed propellant molecule/energetic material stable?

Structure optimization, verification as local minimum

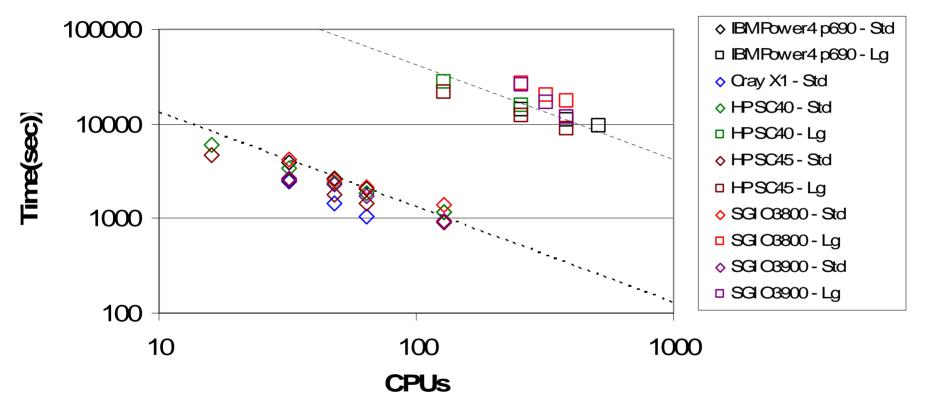
What is its energy content?

Heat of formation

How may it be synthesized? How will it react/decompose/combust?

Reaction pathways

How will we know if we've synthesized it?


Vibrational spectra (IR, Raman, isotopic shifts)
NMR chemical shifts
Electronic spectra

3. M&S of New Chemical Propellants: High Performance Computing

GAVIESS Benchmark Times

3. HPC Tools

Software: A variety of computer programs are used to perform the quantum chemical calculations, including:

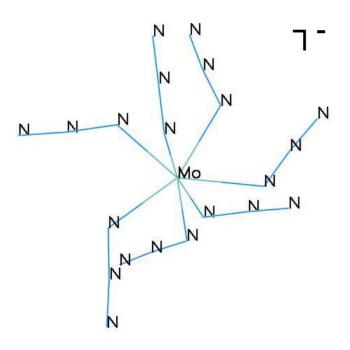
- GAMESS (General Atomic and Molecular Electronic Structure System), from Iowa State University (Mark Gordon et al.)
- ACES II (<u>A</u>dvanced <u>C</u>oncepts in <u>E</u>lectronic <u>S</u>tructure), from University of Florida (Rod Bartlett et al.)
- GAUSSIAN 98, from Gaussian, Inc. (John Pople et al.)
- MOLPRO 98, from University of Birmingham (UK)

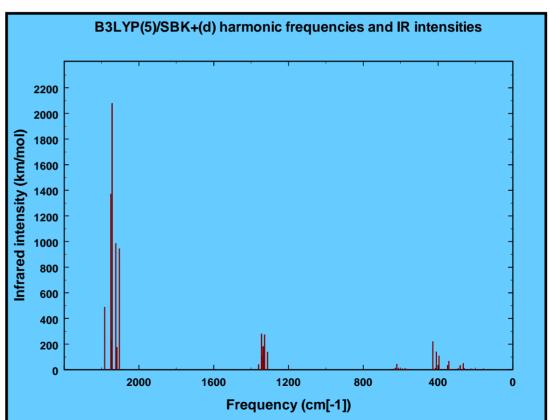
Hardware: A variety of scalable computing systems (IBM SP/Px, Cray T3E, SGI Origin, Linux clusters, etc.) at the DoD HPC centers, plus local computing resources.

4. Examples

The AFRL-Edwards (PRSP) theory/computational group supports several in-house experimental programs:

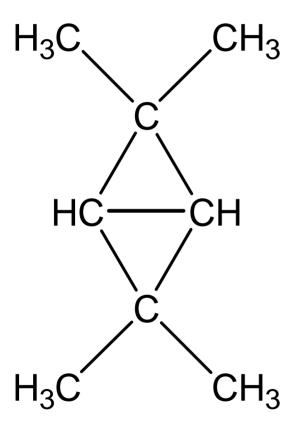
- a) Polynitrogen/high nitrogen chemistry
- b) Energetic ionic liquids
- c) lonic liquids ignition/combustion
- d) Energetic hydrocarbons
- e) Energetic solid ingredients




4. New Polynitrogens/High Nitrogen Compounds: Identifying Intermediates

Role of theory and computation: We calculate the structures, infrared and Raman vibrational spectra, and isotopic vibrational shifts.

 $[Mo(N_3)_7]^-$



4. Energetic Hydrocarbons: Identifying Target Compounds

Role of theory and computation: We calculate the structures, vibrational spectra, heats of formation, and Isp of new hydrocarbons

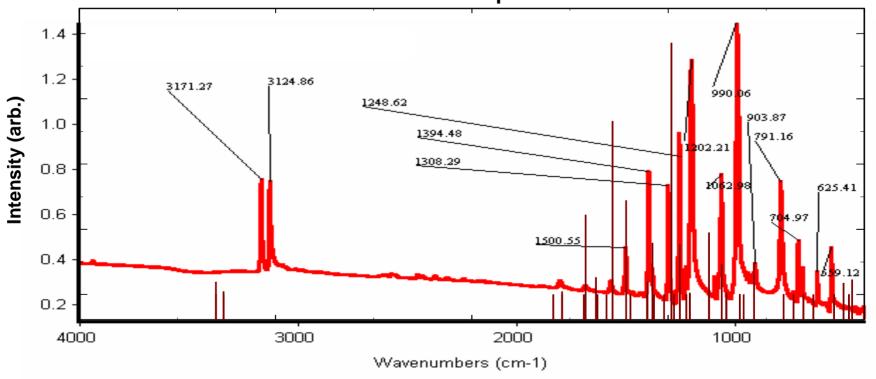
2,2,4,4-tetramethylbicyclo[1.1.0]butane

Potential payoffs of advanced hydrocarbons

- Enabling new missions up to 30% more payload on launch vehicles
- Cutting payload-to-orbit costs 15% reduction for current expendable rockets; 90% reduction if incorporated into nextgeneration reusables

 $\Delta H_f = 0.285 \text{ kcal/g}$

4. Hypergolic Ignition Modeling: Identifying Reaction Pathways



4. Energetic Solid Ingredients: Confirmation of Successful Synthesis

Role of theory and computation: We calculate the structures, infrared and Raman vibrational spectra, and isotopic vibrational shifts.

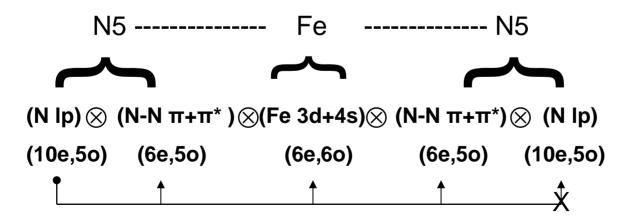
Comparison of calculated (B3LYP(5)/6-311G(d,p)) and experimental infrared vibrational spectrum.

5. Challenges and Bottlenecks: Scaling

Single configuration, no dynamic correlation	Multiple configurations, no dynamic correlation
RHF, ROHF, UHF N ⁴ scaling	TCSCF, GVB, <u>CASSCF</u> , ~N ⁵⁻⁶
Single configuration with dynamic correlation	Multiple configurations with dynamic correlation
MP2/MBPT2 (N ⁵), CI (~N ⁷), CC (N ⁷), DFT* (N ³)	MRMP, MRCI,MRCC

Another bottleneck illustrated by N5-Fe-N5....

5. Challenges and Bottlenecks: Memory


Wavefunction type	# of determinants	Req. Memory
-------------------	-------------------	-------------

FV-CASSCF: (58e,46o) ?? " ∞ "

Omit N-N σ+σ*:(38e,26o) 4.327E+11 " ∞ "

Omit N lps: (18e,16o) 130,873,600 21GB/cpu

Can we simplify our wavefunction even further, yet retain the most important MC character? Try direct product of smaller CASSCF subspaces (w/ or w/o K-fold inter-subspace excitations.)

5. Challenges and Bottlenecks: Memory (cont.)

Need to choose (a) number of subspaces and (b) inter-subspace excitation level "K"

		<u>K=2</u>			<u># Det.</u>	Mem Regmt.
(10e,5o)	(6e,5o)	(6e,6o)	(6e,5o)	(10e,5o)	38,457,546,300	6 TB/cpu
	(6e,5o)	(6e,6o)	(6e,5o)		106,302,900	17 GB/cpu
K=2 (Ip,π→Fe only)						
(10e,5o)	(6e,5o)	(6e,6o)	(6e,5o)	(10e,5o)	1,532,712,600	240 GB/cpu
	(6e,5o)	(6e,6o)	(6e,5o)		54,168,600	9 GB/cpu
K=0 (Generalized CASSCF)						
	(6e,5o)	(6e,6o)	(6e,5o)		10,998,000	2 GB/cpu

5. Challenges and Bottlenecks

Condensed phase properties

"First principles" methods for predicting

- phase transitions
- densities
- sensitivity (shock/friction/impact/electrostatic)
- heats of formation/vaporization/sublimation
- viscosities

6. Collaborators

Dr. Jeff Mills (AFRL/PRSP) – ignition studies, QSPR, ionic liquids, hydrocarbons,

Extramural collaborations

<u>Spectral Theory</u>: Prof. Peter Langhoff (**San Diego Supercomputing Center**), Prof. R.J. Hinde (**Univ. of Tennessee-Knoxville**), Dr. Jeff Sheehy (**NASA MSFC**).

Solid Ingredients: Prof. Don Thompson (University of Missouri-Columbia), Dr.Dan Sorescu (USDOE National Renewable Energy Laboratory)

<u>Ionic Liquids</u>: Prof. Mark Gordon (**Iowa State University**), Prof. Greg Voth (**Univ. of Utah**), Prof. Sharon Hammes-Schiffer (**Univ. of Penn**.), Dr. Ruth Pachter (**AFRL/ML**).

<u>Hydrocarbons</u>: Dr. Mike Zehe (**NASA GRC**)

6. Summary

M&S plays a central role in propellant development

- used to identify target compounds, characterize synthesis routes and viable intermediates, verify successful synthesis
- prediction of bulk properties, including phase transitions, densities, thermal conductivities
- QSPR is useful tool for characterizing bulk properties, including toxicities

Requirements, future directions

- More efficient algorithms for quantum chemical calculations (e.g., spectral theory)
 - improved scalability, memory management
- New theoretical methods and algorithms
 - "first principles" methods for condensed phase properties

6. Backup Slides

3. Parallel Algorithms in GAMESS

GAMESS is one of three codes ported to scalable hardware platforms as part of PRSP's CHSSI project.

Calc. type\Wavefunction type	RHF	ROHF	UHF	GVB	MCSCF
Energy	CDP	CDP	CDP	CDP	CDP●
Gradient	CDP	CDP	CDP	CDP	CDP●
Numerical Hessian	CDP	CDP	CDP	CDP	CDP●
Analytic Hessian	CDP	CDP	-	CDP	CDP
CI energy	CDP●	CDP●	n/a	CDP	CDP
CI gradient	CD	-	n/a	-	-
MP2 energy	CDP●	CDP●	CDP●	-	CP●
MP2 gradient	CDP●	-	CDP●	-	-
DFT Energy	CDP●	CDP●	CDP●	-	-
DFT Gradient	CDP●	CDP●	CDP●	-	-
CC Energy	CD	-	-	- -	-

5. Theory Development: Spectral Theory

Characteristics of the spectral theory

- Fundamentally new approach for solving the molecular Schrödinger equation (SE).
- Potential for increased computational efficiency over current SOTA methods.
- Formally exact quantum chemical method for calculating molecular energies and wavefunctions.
- General formulation for which other approximate methods (pairwise additivity, Balling & Wright 1st order degenerate perturbation theory, diatomics-in-molecules) are seen to be special limiting cases.

Spectral Theory offers the potential to reduce computational chemistry to a "one time only" calculation of atomic properties

Example: Hexane (C₆H₁₄)

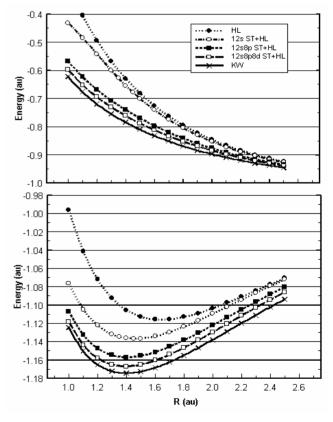
<u>Conventional methods</u>: For each molecular geometry, solve the SE (from scratch) for 50 electrons + 20 nuclei.

Spectral Theory: Solve SE for C atom (6 electrons + 1 nucleus) and H atom (1 electron + 1 nucleus) **once**, store results in atomic database. For each molecular geometry, extract data for C and H atoms from database and combine to obtain molecular energies and properties.

Distribution: Approved for public release; distribution unlimited

3. Theory Development: Spectral Theory

Status of spectral theory development


Formal development is complete, including

- Proof of convergence to correct solution, in the limit of completeness of the atomic product basis.
- Prescription for extracting the correct solutions from the non-physical solutions.
- Identification of atomic electronic transition density matrices as the computational invariant quantities.

Convergence studies are in progress

- Preliminary convergence studies of atomic variant completed, using potential energy curves of H2 as a test bed.
- Viability of spectral theory as practical approach ultimately rests on rate of convergence compared to conventional methods.

Convergence of Spectral Theory potential energy curves of H₂.

